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Abstract
We present a simple derivation of an expression for the superfluid density ns ∝ 1/λ2 in
superconductors with the tight binding energy dispersion. The derived expression is discussed
in detail because of its distinction from the known expressions for ordinary superconductors
with parabolic energy dispersion. We apply this expression for the experimental data analysis of
the isotope effect in London penetration depth parameter λ in the BiSrCuO and YBaCuO family
compounds near optimal doping, taking into account the orthorhombic distortion of crystal
structure, and estimate the isotopic change of hopping parameters from the experimental data.
We point out that 1/λ2 temperature behaviour is very sensitive to the ratio 2�m(T = 0)/kBTc

and estimate this quantity for a number of compounds.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The basics of superconductor electrodynamics is given by
the London equation, j = − c

4πλ2 A, which describes the
relation between the superconducting current density j and
the vector potential A. The parameter λ is typically measured
through the effective magnetic field penetration depth in a
superconductor and gives important information about the
microscopic properties. The elaborated microscopic theory
for the superfluid density (ns ∝ 1/λ2) for ordinary low
temperature superconductors is described in [1, 2]. The
situation for new superconductors is not yet settled. Up to now,
different expressions have been employed in order to describe
1/λ2 data in copper oxide high temperature superconductors
(HTSCs) (see, for example, [3–16]). These circumstances
lead to confusion and misunderstanding in interpretation of the
temperature dependencies of superfluid density. In the present
report, in order to make the situation as clear as possible
in HTSC, we perform a simple derivation of the expression
for 1/λ2 in the tight binding approximation, which is widely
accepted on the basis of the angle resolved photoemission
electron spectroscopy (ARPES) data [17].

2. Current operator

It is known [18] that the charge transfer amplitude from point
Rl to point R j is proportional to

exp

(
−i

e

h̄c

∫ R j

Rl

A ds
)

≈ exp

(
−i

e

h̄c
Ax Rx

jl

)
. (1)

Here it is assumed that the field is applied along the x-axis.
Any transfer integral in the direction nx gains the factor

t x
jl ⇒ t jl exp

(
−i

e

ch̄
Ax Rx

jl

)

∼= t jl

[
1 − i

e

ch̄
Ax Rx

jl − 1

2

(
e

ch̄
Ax Rx

jl

)2

+ · · ·
]

. (2)

We consider first the linear correction for the kinetic
energy operator of the system:

δH (1)

kin = −i
e

ch̄

∑
n,l,σ

tnl Ax Rx
nla

†
n,σ al,σ . (3)

Here a†
n,σ (al,σ ) is the creation (annihilation) operator of a

quasiparticle at site n(l) and σ = ±1/2—spin quantum
numbers.
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By comparison of the expression (3) with the energy in the
field of the vector potential,

δH (1)
kin = −1

c

∑
q

jx(−q)Ax
q + h.c., (4)

we may obtain a general expression for the Fourier component
of the current density operator jx(−q). Substituting the mean
value of the vector potential in the harmonic expansion form,
following [1],

Ax(R0
nl) = 1

2 Ax
q(e

iq·Rn + eiq·Rl ) + h.c. (5)

In (3), performing a Fourier transformation, al,σ =
1√
N

∑
k ak,σ exp(ik · Rl), and comparing then with (4), we

obtain

j (q) = − e

2h̄

∑
k,σ

[
dεk

dkx
+ dεk+q

d(kx + qx)

]
a†

k,σ ak+q,σ . (6)

Here εk = ∑
i ti j exp(ik · R j i) is the usual expression for the

quasiparticle energy in the tight binding approximation, which,
after performing the summation over lattice, we take in the
form suggested in [19].

εk = 1
2 t1[(1 + δt) cos kxa + (1 − δt) cos kyb]

+ t2 cos kxa cos kyb + 1
2 t3[(1 + δt) cos 2kxa

+ (1 − δt) cos 2kyb] + 1
2 t4(cos 2kxa cos kyb

+ cos 2kyb cos kxa) + t5 cos 2kxa cos 2kyb, (7)

where t1, t2, t3, t4 and t5—are the effective hole hopping
parameters in the CuO2 layer and the parameter δt accounts
for the orthorhombic distortion of crystal structure.

Note that in the parabolic zone approximation, tk = εk =
(h̄k)2/2m, where m is the effective carrier mass, equation (6)
has the form given in a standard textbooks [1],

jx(q) = − h̄e

2m

∑
k,σ

[2kx + qx]a†
k,σ ak+q,σ . (8)

Hence, one may consider the expression for the current
operator (6) as a natural generalization of the well-known
expression (8). The latter is valid only in either the weak
coupling approximation or in the case of a parabolic zone with
an isotropic effective mass of charge carriers.

3. Mean value of the paramagnetic current

According to the hands-on terminology in the theory
of superconductivity, equation (6) corresponds to the
paramagnetic current. The diamagnetic current component is
due to the vector potential quadratic corrections to hoppings
(see equation (2)) and will be considered in section 4. In
the first approach the mean value of the operator (6) over the
ground state is equal to zero. The equation for the London
magnetic field penetration depth λ in the superconductor can
be obtained by taking the mean value of equation (6) right up
to the second perturbation term. One of the possible calculation
schemes is to take the unperturbed ground state wavefunctions
and to use the linear response theory and the Green function

technique. The other way is to take into account changes in the
superconductor’s ground state due to the external field and then
take an average in the linear vector-potential limit. We will
use the second scheme because it does not require the Green
function technique and because of its simplicity.

Adding δH (1)

kin to the Hamiltonian of a superconductor with
the linear vector potential terms we have

H =
∑
k,σ

Ekα
†
k,σ αk,σ − i

e

ch̄

∑
n,l,σ

tnl Ax
qe−iqRn Rx

nla
†
n,σ al,σ +h.c.

=
∑
k,σ

Ekα
†
k,σ αk,σ + eAx

q

2ch̄

×
∑
k,σ

[
dεk+q

d(kx + qx)
+ dεk

dkx

]
a†

k,σ ak+q,σ + e(Ax
q)

∗

2ch̄

×
∑
k,σ

[
dεk+q

d(kx + qx)
+ dεk

dkx

]
a†

k+q,σ ak,σ . (9)

Here α
†
k,σ (αk,σ ) are Bogoliubov’s creation (annihilation)

quasiparticle operators [1, 2], Ek = √
(εk − μ)2 + |�k|2 is

the quasiparticle energy, �k is the complex superconducting
gap parameter, and μ is the chemical potential. The quantities
Rx

nl have been incorporated in derivatives dεk+q

d(kx +qx )
and dεk

dkx
. The

correction terms can also be expressed through Bogoliubov’s
operators. Since the expressions in the square brackets in (9)
are odd functions with respect to the transformation k → −k,
it is convenient to consider the difference:

a†
k,↑ap,↑ − a†

−p,↓a−k,↓ = (ukup + vkvp)

× (α
†
k,↑αp,↑ − α

†
−p,↓α−k,↓) − (ukvp − vkup)

× (α
†
k,↑α

†
−p,↓ + αp,↑α−k,↓). (10)

The London penetration depth corresponds to the limit q =
0 [1, 2]. In this case the energy operator (9) takes the form

Hkin(q = 0) =
∑
k,σ

Ekα
†
k,σ αk,σ + eAx

q=0

h̄c

×
∑

k

(
dεk

dkx

)
(α

†
k,↓αk,↓ − α

†
−k,↑α−k,↑). (11)

Hence, we find Bogoliubov’s quasiparticle energies in the
uniform vector potential:

E↓
k = Ek + eAx

q=0

h̄c

dεk

dkx
, E↑

−k = E−k − eAx
q=0

h̄c

dεk

dkx
.

(12)
The obtained equations are the natural generalization of the
well-known equations as obtained in the weak coupling limit
(see, e.g., equation (3.108) in [2]). Moreover, the form (12)
presented by us is quite simple and useful from a physical
point of view. In fact, it sheds new light on the fine detail of
the interaction of Bogoliubov’s quasiparticles with the vector
potential.

The mean value of the current is given by

j p
x (q = 0) = e

h̄

∑
k

dεk

dkx
(〈α†

k,↓αk,↓〉 − 〈α+
−k,↑α−k,↑〉)

= e

h̄

∑
k

dεk

dkx
[ f (E↓

k ) − f (E↑
−k)]. (13)
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The Fermi distribution functions f (Eσ
k ) can be expanded up to

the linear terms,

f (E↑
k ) = 1

1 + exp(E↑
k /kBT )

∼= 1

1 + exp(Ek/kBT )

+ d f (Ek)

dEk

eAx
q=0

h̄c

dεk

dkx
. (14)

Substituting (14) in (13) we obtain

j p
x (q = 0) = −Ax

q=0
2e2

h̄2c

∑
k

(
dεk

dkx

)2 d f (Ek)

dEk
. (15)

In the weak coupling approximation equation (15) coincides
with that given in [2]. The full equation for superfluid
density given in [2], taking into account both the paramagnetic
and diamagnetic currents, has the form (the second term in
equation (3.111) in [2]):

λ−2
L (T ) = λ−2

L (0)

[
1 − 2

∫ ∞

�

(
−d f (E)

dE

)
E

(E2 − �2)1/2
dE

]
.

(16)
Equation (15) should be compared with the second term
in (16). It can be obtained from (13) only in the case where
the values of the derivatives (dεk/dkx)

2 are equal at all points
of the Fermi surface. In strong coupling superconductors this
is not the case and, in particular, in copper oxide HTSC, this
assumption is not true.

4. Mean value of the diamagnetic current

The derivation scheme is as follows. We write the correction
to kinetic energy, which is quadratic over the vector-potential,

δH (2)
kin = −1

2

(
e

ch̄

)2 ∑
n,l,σ

tnl(Ax Rx
nl)

2a†
n,σ al,σ . (17)

Then we turn to Bogoliubov’s quasiparticle operators and take
the average over the ground state of a superconductor. Doing
so for the component for the diamagnetic current we get:

j d
x (q = 0) = −Ax

q=0
e2

h̄2c

∑
k,σ

d2εk

d(kx)2
〈a†

k,σ ak,σ 〉

= −Ax
q=0

e2

h̄2c

∑
k

d2εk

d(kx)2
〈(ukα

†
k,↑ − vkα−k,↓)

× (ukαk,↑ − vkα
†
−k,↓) + · · ·〉

= −2Ax
q=0

e2

h̄2c

∑
k

d2εk

d(kx)2

(
u2

k − v2
k

exp(Ek/kBT ) + 1
+ v2

k

)
. (18)

In the weak coupling limit the second derivative, d2εk/d(kx)
2,

is wavevector independent. In this case the sum
∑

k,σ 〈a†
k,σ ak,σ 〉

is the number of current carriers. It is temperature independent
and corresponds to the unity in the right-hand side in equa-
tion (16). In the tight binding scheme the second derivative
d2εk/d(kx)

2 is not a fixed number and hence the diamagnetic
current is temperature dependent. This is the second argument
why a direct application of equation (15) is not suitable for the
analysis of the temperature dependence of the London penetra-
tion depth in HTSC.

5. The expression for superfluid density

For numerical evaluations it is convenient to transform
equation (18) as follows. The summation in (18) can be
replaced by integration by introducing the density of states and
taking the integral by parts afterwards. Taking into account the
fact that the density of states at the top and at the bottom of the
band is zero, we get the diamagnetic contribution:

j d
x (q = 0) = 2

e2

ch̄2 Ax
q=0

×
∑

k

dεk

dkx

{
d

dkx

[
u2

k − v2
k

exp(Ek/kBT ) + 1
+ v2

k

]}
. (19)

Substituting u2
k = 1

2 [1 + εk−μ

Ek
] and v2

k = 1
2 [1 − εk−μ

Ek
] in (19)

and combining the result with (15), one obtains the total current
jx = j p

x (q = 0) + j d
x (q = 0), which can be compared with

the London equation. Doing so we finally obtain the following
expression:

1

λ2
= 4π

(
e

ch̄

)2{∑
k

dεk

dkx

[ |�k|2
E2

k

dεk

dkx
− (εk − μ)

2E2
k

d|�k|2
dkx

]

×
[

1

Ek
− d

dEk

]
tanh

(
Ek

2kBT

)}
. (20)

It is in agreement with [4, 7, 10]. Note that equation (20)
contains the modulus of the superconducting gap and,
therefore, is independent of the phase of the order parameter
�k = |�k|eiϕk , as it should be in the gauge invariant theory [1].
It is clear also that at T > Tc the quantity 1/λ2 (superfluid
density) is zero, as it should be.

6. Numerical results and discussion

We compare our calculations first with recent experimental
data in BiSrCuO compounds [20]. Figure 1 shows the results
of the calculations (solid lines, equation (20)). Symbols
show the experimental data. We take the energy dispersion
following [21], where the numerical values of the hopping
integrals were defined from ARPES data. We take the
temperature dependence of the superconducting gap parameter
as extracted from the temperature dependence of the Cu and O
Knight shift and the spin–lattice relaxation behaviour [22],

�k(T ) = �d

2
(cos kxa − cos kya) tanh

(
α

√
Tc

T
− 1

)
, (21)

where �d
∼= 24 meV and α ∼= 1.76. The characteristic feature

of our theory is the linear behaviour at low temperatures. At
this point one may treat the coincidence of the calculations
and experimental data as a proof for d-wave pairing. We
note that the analogous conclusion has been made for the
first time in [23] from the 1/λ2 temperature dependence
in YBa2Cu3O6.95. However, it needs verification since the
1/λ2 analysis [23] used the equation with the effective mass
approximation and has no connection with the actual energy
dispersion in copper oxide HTSC.

We want to point out an important feature of HTSC
compounds that the 2�m(T = 0)/kBTc value has a strong

3
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Figure 1. Temperature dependence of the superfluid density.
Symbols: experimental data in single layer tetragonal compound
Tl2Ba2CuO6+δ (Tc = 78 K) [29, 40], in Bi2.15Sr1.85CaCu2O8+x at
optimal doping, δ = 0.16 (maximum Tc = 87 K) [20] and in
Bi2Sr2CaCu2O8 (Tc = 93 K) [29, 41]. Solid lines show the results of
the calculations with �d = 15 meV, �d = 24 meV and
�d = 26 meV, respectively, and δt = 0. The energy dispersion
parameters for Tl2Ba2CuO6+δ are (in eV): μ = −0.244,
t1 = −0.725, t2 = 0.302, t3 = 0.0159, t4 = −0.0805 and
t5 = 0.0034 [42], and for both BiSrCaCuO samples extracted by
Norman [21] (first hoppings set, in eV) are as follows:
μ = −0.1305, t1 = −0.5951, t2 = 0.1636, t3 = −0.0519,
t4 = −0.1117, and t5 = 0.0510.

effect on the 1/λ2 temperature dependence close to Tc. Here
index ‘m’ means a maximum value of the gap. The curvature
of this dependence can be used for determination of the
2�m(T = 0)/kBTc ratio in copper oxide HTSC compounds.
Figure 2 illustrates this effect, showing the calculated 1/λ2

using equation (20) for a set of the �d values. The 1/λ2

temperature dependence from [20] (figure 1) can be perfectly
described by equation (20) with the energy dispersion defined
from ARPES data [17] and 2�m(T = 0)/kBTc ranges from
4.5 to 6.5.

When comparing with experimental data it is important to
note the following. The BiSrCuO and YBaCuO compounds are
not tetragonal. The presence of orthorhombic distortions leads
to an admixture of s-wave component in the superconducting
gap parameter. The analysis of the integral gap equation
and the symmetry considerations lead to the conclusion that
equation (21) should be replaced by the following form for the
superconducting gap [19, 24]:

�k(T ) =
[
�d

2
(cos kx a − cos kyb) + �s

2
(cos kxa+ cos kyb)

]

× tanh
[
α
√

(Tc/T ) − 1
]

+ �ph(T ). (22)

The superconducting gap parameter becomes multicomponent.
The �ph component is, probably, due to the phonon
mediated interaction. Its temperature dependence can be quite
complicated. Below, for simplicity, we approximate it in the
form �ph(T ) = �ph tanh[α′√(Tc/T ) − 1]. From the semi-
empirical estimations based on the photoemission data [25],
neutron scattering [19, 24], tunnelling [26] and Raman [27]
spectroscopies in YBaCuO family compounds, �ph

∼= 0.2�d.

Figure 2. The calculated superfluid density ns ∝ 1/λ2 versus
temperature at various values of �d = 18, 24, 30 and 36 meV, which
corresponds to 2�d/kBTc = 4.5; 6; 7.5; 9, respectively, from down
to up with α ∼= 1.76 and Norman second hopping parameter set [21],
in eV: μ = −0.1960, t1 = −0.6798, t2 = 0.2368, t3 = −0.0794,
t4 = 0.0343, and t5 = 0.0011. The lower curves of the same type
show the tetragonal case. The neighbouring upper curves of the same
type show the calculations with the same fixed �d and in the
orthorhombic case: δt = −0.03, α′ ∼= α, �s

∼= 0.2�d and
�ph

∼= 0.2�d.

Figure 3. Temperature dependence of the superfluid density
ns ∝ 1/λ2 in optimally doped YBa2Cu3O7−y in the a and b
directions. The experimental data is from [29, 43]. Solid lines show
the calculated 1/λ2 for both δt = −0.03 and 0.03 and with the
following parameters set: �d = 25 meV, α ∼= 2, the energy
dispersion is taken as extracted by Norman [21] (second hoppings
set, in eV: μ = −0.1960, t1 = −0.6798, t2 = 0.2368, t3 = −0.0794,
t4 = 0.0343, and t5 = 0.0011). The extracted relations are
�s

∼= 0.1�d and �ph
∼= 0.1�d. The analysis shows that one cannot

distinguish between δt = −0.03 and 0.03 from normalized
λ−2

α (T )/λ−2
α (0) behaviour.

From photoemission data [25], �(kxa ∼= π, kyb = 0) ∼=
28 meV, �(kxa ∼= 0, kyb = π) ∼= 41 meV, it follows �s

∼=
0.2�d. The results of the calculations are shown in figures 2
and 3. The hopping integrals parameters are taken from [21].
The orthorhombicity parameter |δt | ∼= 0.03 (see [25, 28]).
As one can see, the presence of a small admixture of s-wave
components in the superconducting gap parameter does not
qualitatively affect the reduced temperature behaviour of the
superfluid density ns ∝ 1/λ2. However, it is clear that the

4
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effect of orthorhombicity is very essential for λ−2
α (T ) absolute

values [29]. It would be informative for multicomponent
superconductivity to study this effect experimentally.

One of the most outstanding properties of HTSC is the
presence of the isotope effect in the magnetic field penetration
depth parameter in a superconductor. As was emphasized in
the pioneering paper [30] (the research review can be found
in [31]), this effect gives important information about the
interaction of a subsystem of charge carriers with phonons and
an indication of the polaronic character of conductivity in these
compounds. The ordinary superconductors do not possess this
effect. Despite the evident importance of the isotope effect in
1/λ2, its detailed interpretation meets serious difficulties [32].

Let us discuss the experimental data for the isotope effect
in the YBa2Cu3O7−δ superconductor. Figure 4 shows the
temperature dependence of the superfluid density following
equation (20) (solid lines). According to equation (20)
one can separate the two reasons for the 16O–18O isotope
effect in the penetration depth. The first one is related
to changes in the superconducting gap parameter 18�m =
16�m(1 − α��m/m), where α� is the experimentally
measured parameter from 18Tc − 16Tc = −αO

16Tc�m/m.
Its origin is mainly related to �ph component, which, in
accord with the Bardeen–Cooper–Schrieffer (BCS) theory, is
proportional to the Debye frequency. An additional source
for the isotope effect is related to polaron renormalization
of the superexchange coupling parameter [33]. According
to the experimental data [34], the changes in Tc values
are small, αO = 0.024(8), whereas the total isotope
effect for the penetration depth, βO = − d ln λ

d ln m , is
βO(YBa2Cu3O7) ∼= −0.21(4). The experimental data can
be fairly well explained if one assumes the change in the
effective hopping parameters, t , by 16O–18O exchange as 18t =
16t (1 − αt�m/m). Following the polaron theory [35, 36]
we suppose that the hopping’s renormalization is independent
of the distance between the sites. Accepting the above
mentioned procedure as an algorithm for the determination of
αt , we find αt (YBa2Cu3O7) = 0.35. The same procedure
using the experimental data for La1.85Sr0.15CuO4 [37] gives
αt (La1.85Sr0.15CuO4) = 0.26.

It is instructive to compare the values of the coefficients
for the conducting zone in YBa2Cu3O7 and La1.85Sr0.15CuO4

with the analogous parameters in La0.75Ca0.25MnO3 and
Nd0.7Sr0.3MnO3 compounds. According to [38] in manganites
the 16O–18O isotope coefficients are αO

t∗ = 0.7 and αO
t∗ = 1.1,

respectively. These values for manganites are 3–4 times larger
compared with that extracted by us above for copper oxides.
Qualitatively one may understand this as follows. The charge
carriers move on the Mn sites. The polaronic band narrowing is
caused mainly by shifts of the nearest oxygen ions. The oxygen
mode is active. Since the charge carriers in hole doped HTSC
are distributed over the oxygen positions the oxygen isotope
effect is weak. The breathing mode of copper ions is active.
In this case it will be instructive to perform the copper isotope
effect on London penetration depth in hole doped copper oxide
HTSC and the oxygen isotope effect in electron doped copper
oxide PrCeCuO4.

Finally, we want to note that our estimates for the hopping
integral’s renormalization due to the 16O–18O isotope effect

Figure 4. Temperature dependence of the superfluid density
ns ∝ 1/λ2 in optimally doped YBa2Cu3O7−y . Circles show the
isotope effect measured in [34]. Solid lines show the calculated 1/λ2

with the following parameters set: �d = 40 meV, α ∼= 1.76,
δt = −0.03 and the energy dispersion is taken as extracted by
Norman [21] (second hoppings set, in eV: μ = −0.1960,
t1 = −0.6798, t2 = 0.2368, t3 = −0.0794, t4 = 0.0343,
t5 = 0.0011). The extracted value for hoppings’ 16O–18O isotope
renormalization is αt = 0.35. The triangles and squares show the
data from [23] and [44], respectively. The dashed line shows the
results of the calculations, where �d has been changed to
�d = 20 meV and the dash–dotted line with �d = 20 meV, and with
α ∼= 2.9 and α′ ∼= 2.5. The relations �s

∼= 0.2�d and �ph
∼= 0.2�d

are always fixed.

in YBa2Cu3O7 does not contradict experimental data for the
oxygen isotope effect on Tc. The isotope effect on hopping
integrals leads to the renormalization of the density of states
(DoS) at the Fermi level and hence to a negative isotope effect
on Tc according to the BCS superconducting gap equation. The
isotope effect on Tc is usually positive, however, reference [39]
reports the observation of the negative isotope effect on
Tc. We note here that due to orthorhombic distortions the
superconducting gap parameter gains an additional component,
�ph, which gives a strong positive isotope effect on Tc, but
relatively weakly affects 1/λ2. The polaronic renormalization
of hoppings plays the dominant role in the isotope effect in
1/λ2. In this context either the smallness of the positive, or
sometimes the observation of negative [39], isotope effects in
Tc becomes clearer. These effects are the consequences of
two competing contributions. The contribution due to phonons
gives a positive isotope Tc shift, and polaronic narrowing of the
conducting zone parameters gives a negative isotope effect on
Tc. In this connection special interest arises for both Tc and
1/λ2 isotope effect studies in copper oxide HTSC compounds
without orthorhombic distortions, e.g., in Tl2Ba2CuO6+δ.

7. Conclusion

In conclusion, we present a simple derivation of an expression
for superfluid density in the tight binding scheme, which, we
hope, is understandable by a wide audience. We hope it
will clarify some puzzles in the interpretation of experimental
data in layered cuprates. Our analysis for temperature
dependencies of the superfluid density ns ∝ 1/λ2 shows that
its curvature is very sensitive to the ratio 2�m(T = 0)/kBTc.
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The experimental data for λ−2
ab (T ) in overdoped compound

Tl2Ba2CuO6+δ (Tc = 78 K) fits fairly well with 2�m(T =
0)/kBTc

∼= 4.5, whereas for optimally doped Bi2Sr2CaCu2O8

(Tc = 93 K) the quantity 2�m(T = 0)/kBTc
∼= 6.5. Different

experimental methods for YBaCuO compounds near optimal
doping level yield a quite different form for the temperature
behaviour of λ−2

ab (T ) (see figure 4). However, the fits of
experimental data from [23] and [44] in fact give the same
value: 2�m(T = 0)/kBTc

∼= 5.5. The ratios extracted by us
for 2�m(T = 0)/kBTc are in agreement with findings for this
quantity from experimental data. In particular, according to
photoemission data [45] for optimally doped Bi2Sr2CaCu2O8

the value for this ratio is 6.1, whereas the recent STM data [46]
gives 2�m(T = 0)/kBTc = 7.6. Our calculated value 6.5 from
the temperature dependence of penetration depth lies between
these data.

The orthorhombic distortions affect the curvature of the
temperature dependence of λ−2

ab (T ). The λ−2
α (T ) anisotropy

data in the a–b plane allows us to extract the admixtures of
the anisotropic s-wave, �s ≈ 0.1�d, and the isotropic s-wave,
�ph ≈ 0.1�d, components from the predominant d-wave
component of the superconducting gap in YBa2Cu3O6.95. The
extracted value for hopping 16O–18O isotope renormalization
in copper oxide HTSC is relatively small, αt = 0.35, compared
to that for manganites La0.75Ca0.25MnO3 and Nd0.7Sr0.3MnO3.
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